MathDB
f(0)=1,f(1)=0, f(n)+f(n-1)=nf(n-1)+(n-1)f(n-2)

Source: ISI(BS) 2006 #10

June 8, 2012
functionratioprobabilityinductiongeometric sequencealgebra proposedalgebra

Problem Statement

Consider a function ff on nonnegative integers such that f(0)=1,f(1)=0f(0)=1, f(1)=0 and f(n)+f(n1)=nf(n1)+(n1)f(n2)f(n)+f(n-1)=nf(n-1)+(n-1)f(n-2) for n2n \ge 2. Show that f(n)n!=k=0n(1)kk!\frac{f(n)}{n!}=\sum_{k=0}^n \frac{(-1)^k}{k!}