MathDB
Parabola Problem

Source: 1992 National High School Mathematics League, Exam One, Problem 1

February 26, 2020
conicsparabola

Problem Statement

For any positive integer nn, AnA_n and BnB_n are intersection of parabola y=(n2+n)x2(2n+1)x+1y=(n^2+n)x^2-(2n+1)x+1 and xx-axis. Then, the value of A1B1+A2B2++A1992B1992|A_1B_1|+|A_2B_2|+\cdots+|A_{1992}B_{1992}| is (A)19911992(B)19921993(C)19911993(D)19931992\text{(A)}\frac{1991}{1992}\qquad\text{(B)}\frac{1992}{1993}\qquad\text{(C)}\frac{1991}{1993}\qquad\text{(D)}\frac{1993}{1992}