MathDB
a_n < 1/(n-1) if (a_{k-1}+a_{k})(a_{k}+a_{k+1})=a_{k-1}-a_{k+1}

Source: 2011 Grand Duchy of Lithuania, Mathematical Contest p2 (Baltic Way TST)

October 3, 2020
algebrarecurrence relationinequalities

Problem Statement

Let n2n \ge 2 be a natural number and suppose that positive numbers a0,a1,...,ana_0,a_1,...,a_n satisfy the equality (ak1+ak)(ak+ak+1)=ak1ak+1(a_{k-1}+a_{k})(a_{k}+a_{k+1})=a_{k-1}-a_{k+1} for each k=1,2,...,n1k =1,2,...,n -1. Prove that an<1n1a_n< \frac{1}{n-1}