MathDB
Just Hölder

Source: JBMO Shortlist 2009

May 12, 2016
Inequalityalgebra

Problem Statement

A5\boxed{\text{A5}} Let x,y,zx,y,z be positive reals. Prove that (x2+y+1)(x2+z+1)(y2+x+1)(y2+z+1)(z2+x+1)(z2+y+1)(x+y+z)6(x^2+y+1)(x^2+z+1)(y^2+x+1)(y^2+z+1)(z^2+x+1)(z^2+y+1)\geq (x+y+z)^6