MathDB
IMO Shortlist 2009 - Problem A4

Source:

July 5, 2010
inequalitiesIMO Shortlist

Problem Statement

Let aa, bb, cc be positive real numbers such that ab+bc+ca3abcab+bc+ca\leq 3abc. Prove that a2+b2a+b+b2+c2b+c+c2+a2c+a+32(a+b+b+c+c+a)\sqrt{\frac{a^2+b^2}{a+b}}+\sqrt{\frac{b^2+c^2}{b+c}}+\sqrt{\frac{c^2+a^2}{c+a}}+3\leq \sqrt{2}\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)
Proposed by Dzianis Pirshtuk, Belarus