MathDB
ВС/US = DE/SТ = FА/ТU if АВ/РR = CD/RQ= ЕF/QP, convex hexagon ABCDEF

Source: 2003 VIII All-Ukrainian Correspondence MO of magazine ''In the World of Mathematics'', grades 5-11 p11

January 10, 2023
geometryhexagonratio

Problem Statement

Let ABCDEFABCDEF be a convex hexagon, P,Q,RP, Q, R be the intersection points of ABAB and EFEF, EFEF and CDCD, CDCD and ABAB. S,T,UVS, T,UV are the intersection points of BCBC and DEDE, DEDE and FAFA, FAFA and BCBC, respectively. Prove that if ABPR=CDRQ=EFQP,\frac{AB}{PR}=\frac{CD}{RQ}=\frac{EF}{QP}, then BCUS=DEST=FATU.\frac{BC}{US}=\frac{DE}{ST}=\frac{FA}{TU}.