MathDB
JBMO Shortlist 2019 A7

Source:

September 12, 2020
algebra

Problem Statement

Show that for any positive real numbers a,b,ca, b, c such that a+b+c=ab+bc+caa + b + c = ab + bc + ca, the following inequality holds 3+a3+123+b3+123+c3+1232(a+b+c)3 + \sqrt[3]{\frac{a^3+1}{2}}+\sqrt[3]{\frac{b^3+1}{2}}+\sqrt[3]{\frac{c^3+1}{2}}\leq 2(a+b+c)
Proposed by Dorlir Ahmeti, Albania