MathDB
extremum inequality with \frac{1}{a+b} and \frac{1}{a^2+bc}

Source: 239 2017 J7

June 3, 2020
Inequalityinequalities

Problem Statement

Find the greatest possible value of s>0s>0, such that for any positive real numbers a,b,ca,b,c, (1a+b+1b+c+1c+a)2s(1a2+bc+1b2+ca+1c2+ab).(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a})^2 \geq s(\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ab}).