MathDB
Old inequality in new clothing

Source: 6th German TST 2006, 21 may 2006, problem 3

December 29, 2006
inequalitiesinductioninequalities proposed

Problem Statement

Let nn be a positive integer, and let b1b_{1}, b2b_{2}, ..., bnb_{n} be nn positive reals. Set a1=b1b1+b2+...+bna_{1}=\frac{b_{1}}{b_{1}+b_{2}+...+b_{n}} and ak=b1+b2+...+bkb1+b2+...+bk1a_{k}=\frac{b_{1}+b_{2}+...+b_{k}}{b_{1}+b_{2}+...+b_{k-1}} for every k>1k>1. Prove the inequality a1+a2+...+an1a1+1a2+...+1ana_{1}+a_{2}+...+a_{n}\leq\frac{1}{a_{1}}+\frac{1}{a_{2}}+...+\frac{1}{a_{n}}.