Base values between 2 and 3 satisfy fractional inequality
Source: IMO Shortlist 1995, A3
August 10, 2008
inequalitiesalgebran-variable inequalityIMO Shortlist
Problem Statement
Let be an integer, Let be real numbers such that for i \equal{} 1, 2, \ldots, n. If s \equal{} a_1 \plus{} a_2 \plus{} \ldots \plus{} a_n, prove that \frac{a^2_1 \plus{} a^2_2 \minus{} a^2_3}{a_1 \plus{} a_2 \minus{} a_3} \plus{} \frac{a^2_2 \plus{} a^2_3 \minus{} a^2_4}{a_2 \plus{} a_3 \minus{} a_4} \plus{} \ldots \plus{} \frac{a^2_n \plus{} a^2_1 \minus{} a^2_2}{a_n \plus{} a_1 \minus{} a_2} \leq 2s \minus{} 2n.