MathDB
Miklós Schweitzer 2001 Problem 5

Source:

February 12, 2017
Miklos Schweitzerfunctionfunctional equationreal analysis

Problem Statement

Prove that if the function ff is defined on the set of positive real numbers, its values are real, and ff satisfies the equation f(x+y2)+f(2xyx+y)=f(x)+f(y)f\left( \frac{x+y}{2}\right) + f\left(\frac{2xy}{x+y} \right) =f(x)+f(y) for all positive x,yx,y, then 2f(xy)=f(x)+f(y)2f(\sqrt{xy})=f(x)+f(y) for every pair x,yx,y of positive numbers.