Given a positive integer n≥2. Find all n-tuples of positive integers (a1,a2,…,an), such that 1<a1≤a2≤a3≤⋯≤an, a1 is odd, and
(1) M=2n1(a1−1)a2a3⋯an is a positive integer;
(2) One can pick n-tuples of integers (ki,1,ki,2,…,ki,n) for i=1,2,…,M such that for any 1≤i1<i2≤M, there exists j∈{1,2,…,n} such that ki1,j−ki2,j≡0,±1(modaj).