MathDB
inequality in n^2 variables

Source: Yugoslav TST 1972 P3

May 30, 2021
inequalities

Problem Statement

Assume that the numbers from the table a11a12a1na21a22a2nan1an2ann\begin{matrix}a_{11}&a_{12}&\cdots&a_{1n}\\a_{21}&a_{22}&\cdots&a_{2n}\\\vdots&\vdots&&\vdots\\a_{n1}&a_{n2}&\cdots&a_{nn}\end{matrix}satisfy the inequality: j=1naj1x1+aj2x2++ajnxnM,\sum_{j=1}^n|a_{j1}x_1+a_{j2}x_2+\ldots+a_{jn}x_n|\le M,for each choice xj=±1x_j=\pm1. Prove that a11+a22++annM.|a_{11}+a_{22}+\ldots+a_{nn}|\le M.