MathDB
Inequality with n terms

Source: BMO Shortlist 2022, A2

May 13, 2023
algebrainequalities

Problem Statement

Let k>1k > 1{} be a real number, n3n\geqslant 3 be an integer, and x1x2xnx_1 \geqslant x_2\geqslant\cdots\geqslant x_n be positive real numbers. Prove that x1+kx2x2+x3+x2+kx3x3+x4++xn+kx1x1+x2n(k+1)2.\frac{x_1+kx_2}{x_2+x_3}+\frac{x_2+kx_3}{x_3+x_4}+\cdots+\frac{x_n+kx_1}{x_1+x_2}\geqslant\frac{n(k+1)}{2}.Ilija Jovcheski