MathDB
n-dimensional vector space

Source: IMS 2014 - Day2 - Problem10

October 5, 2014
vectorgeometrygeometric transformationgroup theoryabstract algebralinear algebralinear algebra unsolved

Problem Statement

Let VV be a nn-dimensional vector space over a field FF with a basis {e1,e2,,en}\{e_1,e_2, \cdots ,e_n\}.Prove that for any mm-dimensional linear subspace WW of VV, the number of elements of the set WPW \cap P is less than or equal to 2m2^m where P={λ1e1+λ2e2++λnen:λi=0,1}P=\{\lambda_1e_1 + \lambda_2e_2 + \cdots + \lambda_ne_n : \lambda_i=0,1\}.