MathDB
f_n(x^n)-f_1 (x)f_1(y)+ f_n(y^n) = 0, nxn functional system

Source: Austrian - Polish 1999 APMC

May 4, 2020
system of equationsfunctional equationfunctionalalgebra

Problem Statement

Given an integer n2n \ge 2, find all sustems of nn functionsf1,...,fn:RR f_1,..., f_n : R \to R such that for all x,yRx,y \in R {f1(x)f2(x)f2(y)+f1(y)=0f2(x2)f3(x)f3(y)+f2(y2)=0...fn(xn)f1(x)f1(y)+fn(yn)=0\begin{cases} f_1(x)-f_2 (x)f_2(y)+ f_1(y) = 0 \\ f_2(x^2)-f_3 (x)f_3(y)+ f_2(y^2) = 0 \\ ... \\ f_n(x^n)-f_1 (x)f_1(y)+ f_n(y^n) = 0 \end {cases}