MathDB
CentroAmerican 2015 #2

Source: 2015 CentroAmerican Math Olympiad #2

June 27, 2015
OMCCalgebra

Problem Statement

A sequence (an)(a_n) of real numbers is defined by a0=1a_0=1, a1=2015a_1=2015 and for all n1n\geq1, we have an+1=n1n+1ann2n2+nan1.a_{n+1}=\frac{n-1}{n+1}a_n-\frac{n-2}{n^2+n}a_{n-1}. Calculate the value of a1a2a2a3+a3a4a4a5++a2013a2014a2014a2015\frac{a_1}{a_2}-\frac{a_2}{a_3}+\frac{a_3}{a_4}-\frac{a_4}{a_5}+\ldots+\frac{a_{2013}}{a_{2014}}-\frac{a_{2014}}{a_{2015}}.