Sum (m_i+1/m_i)^2>=k(k/S+S/k) where Sum m_i=S.
Source: Vietnam MO 1980 P2
March 17, 2011
functioninequalitiesinequalities proposed
Problem Statement
Let be positive numbers with the sum . Prove that
\displaystyle\sum_{i=1}^k\left(m_i +\frac{1}{m_i}\right)^2 \ge k\left(\frac{k}{S}+\frac{S}{k}\right)^2