MathDB
0463 tetahedron 4th edition Round 6 p3

Source:

May 7, 2021
inequalities4th editionalgebra

Problem Statement

If n>2n>2 is an integer and x1,,xnx_1, \ldots ,x_n are positive reals such that 1x1+1x2++1xn=n \frac 1{x_1} + \frac 1{x_2} + \cdots + \frac 1{x_n} = n then the following inequality takes place x22++xn2n1x12+x32++xn2n1x12++xn12n1(x12+...+xn2n)n1. \frac{x_2^2+\cdots+x_n^2}{n-1}\cdot \frac {x_1^2+x_3^2+\cdots +x_n^2} {n-1} \cdots \frac{x_1^2+\cdots+x_{n-1}^2}{n-1}\geq \left(\frac{x_1^2+...+x_n^2}{n}\right)^{n-1}.