MathDB
Functional equation

Source: Iran 3rd round 2017 first Algebra exam

August 7, 2017
algebrafunctional equation

Problem Statement

Find all functions f:R+R+f:\mathbb{R^+}\rightarrow\mathbb{R^+} such that x+f(y)xf(y)=f(1y+f(1x))\frac{x+f(y)}{xf(y)}=f(\frac{1}{y}+f(\frac{1}{x})) for all positive real numbers xx and yy.