MathDB
sum_{k=0}^{2009 \choose 2} f(2008, k), if f(n, k) = f(n -1, k) + f(n- 1, k - 2n)

Source: Indian Postal Coaching 2009 set 5 p3

May 26, 2020
functionSumCombinationsrecurrence relation

Problem Statement

Let N0N_0 denote the set of nonnegative integers and ZZ the set of all integers. Let a function f:N0×ZZf : N_0 \times Z \to Z satisfy the conditions (i) f(0,0)=1f(0, 0) = 1, f(0,1)=1f(0, 1) = 1 (ii) for all k,k0,k1k, k \ne 0, k \ne 1, f(0,k)=0f(0, k) = 0 and (iii) for all n1n \ge 1 and k,f(n,k)=f(n1,k)+f(n1,k2n)k, f(n, k) = f(n -1, k) + f(n- 1, k - 2n). Find the value of
k=0(20092)f(2008,k)\sum_{k=0}^{2009 \choose 2} f(2008, k)