MathDB
another sequence with floor function, prove S_{2001}=2S_{2000}+1

Source: Rioplatense Olympiad 2001 level 3 P3

September 6, 2018
algebrafloor functionfunctionSequenceradical

Problem Statement

For every integer n>1n > 1, the sequence (Sn)\left( {{S}_{n}} \right) is defined by Sn=2n2+2+...+2n radicals{{S}_{n}}=\left\lfloor {{2}^{n}}\underbrace{\sqrt{2+\sqrt{2+...+\sqrt{2}}}}_{n\ radicals} \right\rfloor where x\left\lfloor x \right\rfloor denotes the floor function of xx. Prove that S2001=2S2000+1{{S}_{2001}}=2\,{{S}_{2000}}+1. .