MathDB
Difference problem(KgNM2011)

Source:

April 20, 2011
inductionfunctioncontinued fractionalgebra unsolvedalgebra

Problem Statement

Given that g(n)=12+13+1...+1n1g(n) = \frac{1}{{2 + \frac{1}{{3 + \frac{1}{{... + \frac{1}{{n - 1}}}}}}}} and k(n)=12+13+1...+1n1+1nk(n) = \frac{1}{{2 + \frac{1}{{3 + \frac{1}{{... + \frac{1}{{n - 1 + \frac{1}{n}}}}}}}}}, for natural nn. Prove that g(n)k(n)1(n1)!n!\left| {g(n) - k(n)} \right| \le \frac{1}{{(n - 1)!n!}}.