MathDB
A hard ineq, given that xyz + xy + yz + zx = 4

Source: IMOC 2021 A10

August 11, 2021
Inequalityalgebrainequalities

Problem Statement

For any positive reals xx, yy, zz with xyz+xy+yz+zx=4xyz + xy + yz + zx = 4, prove that xy+x+yz+yz+y+zx+zx+z+xy33(x+2)(y+2)(z+2)(2x+1)(2y+1)(2z+1).\sqrt{\frac{xy+x+y}{z}}+\sqrt{\frac{yz+y+z}{x}}+\sqrt{\frac{zx+z+x}{y}}\geq 3\sqrt{\frac{3(x+2)(y+2)(z+2)}{(2x + 1)(2y + 1)(2z + 1). }}