MathDB
Prove this inequalitiy 2

Source: 2019 Jozsef Wildt International Math Competition-W. 36

May 19, 2020
inequalities

Problem Statement

For any aa, bb, c>0c > 0 and for any nNn \in \mathbb{N}^*, prove the inequality(ab)(ab)n+(bc)(bc)n+(ca)(ca)n(ab)ab+(bc)bc+(ca)ca(a - b)\left(\frac{a}{b}\right)^n+(b - c)\left(\frac{b}{c}\right)^n+(c - a)\left(\frac{c}{a}\right)^n\geq (a - b)\frac{a}{b}+(b - c)\frac{b}{c}+(c - a)\frac{c}{a}