MathDB
A^7+A^5+A^3+A=I implies det(A)>0

Source: VJIMC 2022 1.2

April 11, 2022
matrixlinear algebra

Problem Statement

Let n1n\ge1. Assume that AA is a real n×nn\times n matrix which satisfies the equality A7+A5+A3+AI=0.A^7+A^5+A^3+A-I=0. Show that det(A)>0\det(A)>0.