MathDB
Two matrices that generate a whole family

Source: Brazilian Undergrad Mathematics Olympiad 2022 P2

November 23, 2022
linear algebramatrix

Problem Statement

Let GG be the set of 2×22\times 2 matrices that such G={(abcd)a,b,c,dZ,adbc=1,c is a multiple of 3} G = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid\, a,b,c,d \in \mathbb{Z}, ad-bc = 1, c \text{ is a multiple of } 3 \right\} and two matrices in GG: A=(1101)      B=(1132) A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\;\;\; B = \begin{pmatrix} -1 & 1 \\ -3 & 2 \end{pmatrix} Show that any matrix in GG can be written as a product M1M2MrM_1M_2\cdots M_r such that Mi{A,A1,B,B1},irM_i \in \{A, A^{-1}, B, B^{-1}\}, \forall i \leq r