MathDB
Miklós Schweitzer 1958- Problem 11

Source:

October 23, 2015
college contests

Problem Statement

11. Let an=(1)n(n=1,2,,2N)a_n = (-1)^n (n= 1, 2, \dots , 2N). Denote by AN(x)A_{N}(x) the number of the sequences 1i1<i2<<iN2N1 \leq i_1 < i_2< \dots <i_N \leq 2N such that ai1+ai2++aiN<xN2(<x<)a_{i_1}+a_{i_2}+ \dots +a_{i_N}< x \sqrt{\frac{N}{2}} (-\infty < x < \infty). Show that
limNAN(x)(2NN)=12πeu22du\lim_{N \to \infty} \frac{A_{N}(x)}{\binom{2N}{N}} = \frac {1}{\sqrt {2\pi}} \int_{-\infty}^{\infty} e^{-\frac{u^2}{2}} du.
(N. 16)