MathDB
HOMC (Vietnam)

Source:

January 28, 2016
inequalities

Problem Statement

Let a; b; c be positive integers. Prove that (b+ca)2(b+c)2+a2+(c+ab)2(c+a)2+b2+(a+bc)2(a+b)2+c235 \frac{(b+c-a)^2}{(b+c)^2+a^2} + \frac{(c+a-b)^2}{(c+a)^2+b^2} + \frac{(a+b-c)^2}{(a+b)^2+c^2} \geq \frac{3}{5}