MathDB
Geometric inequality in convex quadrilateral

Source: 239 2013 S7

August 7, 2020
geometryGeometric Inequalities

Problem Statement

Point MM is the midpoint of side BCBC of convex quadrilateral ABCDABCD. If AMD<120\angle{AMD} < 120^{\circ}. Prove that (AB+AM)2+(CD+DM)2>ADBC+2ABCD.(AB+AM)^2 + (CD+DM)^2 > AD \cdot BC + 2AB \cdot CD.