Miklos Schweitzer 1950_3
Source: second part of 1950
October 3, 2008
algebra proposedalgebra
Problem Statement
For any system of positive real numbers, let
f_1(x_1,x_2,...,x_n) \equal{} x_1,
and
f_{\nu} \equal{} \frac {x_1 \plus{} 2x_2 \plus{} \cdots \plus{} \nu x_{\nu}}{\nu \plus{} (\nu \minus{} 1)x_1 \plus{} (\nu \minus{} 2)x_2 \plus{} \cdots \plus{} 1\cdot x_{\nu \minus{} 1}}
for \nu \equal{} 2,3,...,n. Show that for any , a positive integer can be found such that for every there exists a system of positive real numbers
with x_1' \plus{} x_2' \plus{} \cdots \plus{} x_n' \equal{} 1 and for \nu \equal{} 1,2,...,n .