MathDB
H 50

Source:

May 25, 2007
modular arithmeticDiophantine Equations

Problem Statement

Show that the equation y2=x3+2a33b2y^{2}=x^{3}+2a^{3}-3b^2 has no solution in integers if ab0ab \neq 0, a≢1  (mod3)a \not\equiv 1 \; \pmod{3}, 33 does not divide bb, aa is odd if bb is even, and p=t2+27u2p=t^2 +27u^2 has a solution in integers t,ut,u if pap \vert a and p1  (mod3)p \equiv 1 \; \pmod{3}.