MathDB
A funny inequality with (possibly negative) real numbers

Source: 2024 Polish Junior Math Olympiad Finals P3

May 5, 2024
inequalitiesinequalities proposedalgebraalgebra proposed

Problem Statement

Real numbers a,b,ca,b,c satisfy a+b0a+b \ne 0, b+c0b+c \ne 0 and c+a0c+a \ne 0. Show that (a2ca+b+b2ab+c+c2bc+a)(b2ca+b+c2ab+c+a2bc+a)0.\left(\frac{a^2c}{a+b}+\frac{b^2a}{b+c}+\frac{c^2b}{c+a}\right) \cdot \left(\frac{b^2c}{a+b}+\frac{c^2a}{b+c}+\frac{a^2b}{c+a}\right) \ge 0.