MathDB
R =2r/(r+1) , a square and two incircles

Source: OLCOMA Costa Rica National Olympiad, Final Round, 2020 p2

March 26, 2024
geometrycirclessquare

Problem Statement

Consider a square ABCDABCD. Let MM be the midpoint of segment ABAB, Γ1\Gamma_1 be the circle tangent to AD\overline{AD}, AM\overline{AM} and MC\overline{MC} with radius r>0r > 0 and let Γ2\Gamma_2 be the circle tangent to AD\overline{AD}, DC\overline{DC} and MC\overline{MC} with radius R>0R > 0. Prove that R=2rr+1R =\frac{2r}{r+1}.