MathDB
decimal and floor function ineq

Source: 2023 Mathematics Regional Olympiad of Mexico West P3

October 21, 2024
algebrafloor functioninequalities

Problem Statement

Let x>1x>1 be a real number that is not an integer. Denote {x}\{x\} as its decimal part and x\lfloor x\rfloor the floor function. Prove that (x+{x}xxx+{x})+(x+x{x}{x}x+x)>163 \left(\frac{x+\{x\}}{\lfloor x\rfloor}-\frac{\lfloor x\rfloor}{x+\{x\}}\right)+\left(\frac{x+\lfloor x\rfloor}{\{x\}}-\frac{\{x\}}{x+\lfloor x\rfloor}\right)>\frac{16}{3}