MathDB
f(n+2) = 23 * f(n+1) + f(n)

Source: China TST 1991, problem 5

June 27, 2005
functionnumber theory unsolvednumber theory

Problem Statement

Let ff be a function f:N{0}N,f: \mathbb{N} \cup \{0\} \mapsto \mathbb{N}, and satisfies the following conditions: (1) f(0)=0,f(1)=1,f(0) = 0, f(1) = 1, (2) f(n+2)=23f(n+1)+f(n),n=0,1,.f(n+2) = 23 \cdot f(n+1) + f(n), n = 0,1, \ldots. Prove that for any mNm \in \mathbb{N}, there exist a dNd \in \mathbb{N} such that mf(f(n))dn.m | f(f(n)) \Leftrightarrow d | n.