MathDB
Prove this identity on integration

Source: 2019 Jozsef Wildt International Math Competition-W. 10

May 18, 2020
integrationtrigonometryExponentscalculus

Problem Statement

If si(x)=x(sintt)dt;x>0{si}(x) =- \int \limits_{x}^{\infty}\left(\frac{\sin t}{t}\right)dt; x>0 then ee2(1x(si(e4x)si(e3x)))dx=3e4(1x(si(e2x)si(ex)))dx\int \limits_{e}^{e^2} \left(\frac{1}{x}\left(si\left(e^4x\right)-si\left(e^3x\right)\right)\right)\,dx=\int \limits_{3}^{e^4} \left(\frac{1}{x}\left(\operatorname{si}\left(e^2x\right)-si\left(ex\right)\right)\right)dx