MathDB
TOT 066 1984 Spring S-A5 q(n) < \sqrt{2n} p(n), no of partitions of n

Source:

August 19, 2019
partitionnumber theorycombinatorics

Problem Statement

Let p(n)p(n) be the number of partitions of the natural number nn into natural summands. The diversity of a partition is by definition the number of different summands in it. Denote by q(n)q(n) the sum of the diversities of all the p(n)p(n) partitions of nn. (For example, p(4)=5p(4) = 5, the five distinct partitions of 44 being 4,3+1,2+2,2+1+1,1+1+1+1,4, 3 + 1, 2+2, 2 + 1 + 1, 1 + 1 + 1 + 1, and g(4)=1+2+1+2+1=7g(4) =1 + 2+1+ 2+1 = 7.) Prove that, for all natural numbers nn, (a) q(n)=1+P(1)+P(2)+p(3)+...+p(n1)q(n)= 1 + P(1) + P(2) + p(3) + ...+ p(n -1), (b) q(n)<2np(n)q(n) < \sqrt{2n} p(n).
(AV Zelevinskiy, Moscow)