MathDB
IMC 1994 D1 P1

Source:

March 6, 2017
IMClinear algebramatrix

Problem Statement

a) Let AA be a n×nn\times n, n2n\geq 2, symmetric, invertible matrix with real positive elements. Show that znn22nz_n\leq n^2-2n, where znz_n is the number of zero elements in A1A^{-1}.
b) How many zero elements are there in the inverse of the n×nn\times n matrix A=(111111222212111121221212)A=\begin{pmatrix} 1&1&1&1&\ldots&1\\ 1&2&2&2&\ldots&2\\ 1&2&1&1&\ldots&1\\ 1&2&1&2&\ldots&2\\ \vdots&\vdots&\vdots&\vdots&\ddots&\vdots\\ 1&2&1&2&\ldots&\ddots \end{pmatrix}