MathDB
IMO ShortList 2001, number theory problem 2

Source: IMO ShortList 2001, number theory problem 2

September 30, 2004
number theorycalculusIMO Shortlistalgebraquadratics

Problem Statement

Consider the system \begin{align*}x + y &= z + u,\\2xy & = zu.\end{align*} Find the greatest value of the real constant mm such that mx/ym \leq x/y for any positive integer solution (x,y,z,u)(x,y,z,u) of the system, with xyx \geq y.