How many prime divisors does the number 1⋅2003+2⋅2002+3⋅2001+⋯+2001⋅3+2002⋅2+2003⋅1 have?<spanclass=′latex−bold′>(A)</span>3<spanclass=′latex−bold′>(B)</span>4<spanclass=′latex−bold′>(C)</span>5<spanclass=′latex−bold′>(D)</span>6<spanclass=′latex−bold′>(E)</span>7