MathDB
P02 [Number Theory] - Turkish NMO 1st Round - 2003

Source:

May 6, 2014

Problem Statement

How many prime divisors does the number 12003+22002+32001++20013+20022+200311\cdot 2003 + 2\cdot 2002 + 3\cdot 2001 + \cdots + 2001 \cdot 3 + 2002 \cdot 2 + 2003 \cdot 1 have?
<spanclass=latexbold>(A)</span> 3<spanclass=latexbold>(B)</span> 4<spanclass=latexbold>(C)</span> 5<spanclass=latexbold>(D)</span> 6<spanclass=latexbold>(E)</span> 7 <span class='latex-bold'>(A)</span>\ 3 \qquad<span class='latex-bold'>(B)</span>\ 4 \qquad<span class='latex-bold'>(C)</span>\ 5 \qquad<span class='latex-bold'>(D)</span>\ 6 \qquad<span class='latex-bold'>(E)</span>\ 7