MathDB
Miklos Schweitzer 1982_4

Source:

January 31, 2009
logarithmsnumber theory proposednumber theory

Problem Statement

Let f(n)=pn,  pαn<pα+1 pα. f(n)= \sum_{p|n , \;p^{\alpha} \leq n < p^{\alpha+1} \ } p^{\alpha} . Prove that lim supnf(n)loglognnlogn=1. \limsup_{n \rightarrow \infty}f(n) \frac{ \log \log n}{n \log n}=1 . P. Erdos