MathDB
Problems
Contests
Undergraduate contests
Miklós Schweitzer
1982 Miklós Schweitzer
4
Miklos Schweitzer 1982_4
Miklos Schweitzer 1982_4
Source:
January 31, 2009
logarithms
number theory proposed
number theory
Problem Statement
Let
f
(
n
)
=
∑
p
∣
n
,
p
α
≤
n
<
p
α
+
1
p
α
.
f(n)= \sum_{p|n , \;p^{\alpha} \leq n < p^{\alpha+1} \ } p^{\alpha} .
f
(
n
)
=
p
∣
n
,
p
α
≤
n
<
p
α
+
1
∑
p
α
.
Prove that
lim sup
n
→
∞
f
(
n
)
log
log
n
n
log
n
=
1.
\limsup_{n \rightarrow \infty}f(n) \frac{ \log \log n}{n \log n}=1 .
n
→
∞
lim
sup
f
(
n
)
n
lo
g
n
lo
g
lo
g
n
=
1.
P. Erdos
Back to Problems
View on AoPS