MathDB
Function Equation on Positive Rationals

Source: 1991 IrMO Paper 2 Problem 4

October 1, 2017
algebrafunctional equationfunctional equation in Q

Problem Statement

Let P\mathbb{P} be the set of positive rational numbers and let f:PPf:\mathbb{P}\to\mathbb{P} be such that f(x)+f(1x)=1f(x)+f\left(\frac{1}{x}\right)=1 and f(2x)=2f(f(x))f(2x)=2f(f(x)) for all xPx\in\mathbb{P}. Find, with proof, an explicit expression for f(x)f(x) for all xPx\in \mathbb{P}.