Let m≤n be positive integers and p be a prime. Let p−expansions of m and n be
m=a0+a1p+⋯+arprn=b0+b1p+⋯+bsps
respectively, where ar,bs=0, for all i∈{0,1,…,r} and for all j∈{0,1,…,s}, we have 0≤ai,bj≤p−1 .
If ai≤bi for all i∈{0,1,…,r}, we write m≺pn. Prove that
p∤(mn)⇔m≺pn.