MathDB
p-expansions of m and n

Source: Turkey TST 1999 - P1

July 2, 2012
number theory proposednumber theory

Problem Statement

Let mnm \leq n be positive integers and pp be a prime. Let pp-expansions of mm and nn be m=a0+a1p++arprm = a_0 + a_1p + \dots + a_rp^rn=b0+b1p++bspsn = b_0 + b_1p + \dots + b_sp^s respectively, where ar,bs0a_r, b_s \neq 0, for all i{0,1,,r}i \in \{0,1,\dots,r\} and for all j{0,1,,s}j \in \{0,1,\dots,s\}, we have 0ai,bjp10 \leq a_i, b_j \leq p-1 . If aibia_i \leq b_i for all i{0,1,,r}i \in \{0,1,\dots,r\}, we write mpn m \prec_p n. Prove that p(nm)mpnp \nmid {{n}\choose{m}} \Leftrightarrow m \prec_p n.