MathDB
Make c1 large and c2 small

Source: 2023 IMOC A6

September 9, 2023
IMOCalgebrainequalities

Problem Statement

We define f(x,y,z)=xyx2+y2+yzy2+z2+zxz2+x2.f(x,y,z)=|xy|\sqrt{x^2+y^2}+|yz|\sqrt{y^2+z^2}+|zx|\sqrt{z^2+x^2}. Find the best constants c1,c2Rc_1,c_2\in\mathbb{R} such that c1(x2+y2+z2)3/2f(x,y,z)c1(x2+y2+z2)3/2c_1(x^2+y^2+z^2)^{3/2}\leq f(x,y,z)\leq c_1(x^2+y^2+z^2)^{3/2} hold for all reals x,y,zx,y,z satisfying x+y+z=0x+y+z=0.
Proposed by Untro368.