MathDB
IMO Long List 1986 - Find S(r, v, n)

Source:

August 29, 2010
number theory proposednumber theory

Problem Statement

For given positive integers r,v,nr, v, n let S(r,v,n)S(r, v, n) denote the number of nn-tuples of non-negative integers (x1,,xn)(x_1, \cdots, x_n) satisfying the equation x1++xn=rx_1 +\cdots+ x_n = r and such that xivx_i \leq v for i=1,,ni = 1, \cdots , n. Prove that S(r,v,n)=k=0m(1)k(nk)(r(v+1)k+n1n1)S(r, v, n)=\sum_{k=0}^{m} (-1)^k \binom nk \binom{r - (v + 1)k + n - 1}{n-1} Where m={n,[rv+1]}.m=\left\{n,\left[\frac{r}{v+1}\right]\right\}.