MathDB
Problems
Contests
Undergraduate contests
IMC
1994 IMC
4
IMC 1994 D1 P4
IMC 1994 D1 P4
Source:
March 6, 2017
IMC
linear algebra
Problem Statement
Let
α
∈
R
\
{
0
}
\alpha\in\mathbb R\backslash \{ 0 \}
α
∈
R
\
{
0
}
and suppose that
F
F
F
and
G
G
G
are linear maps (operators) from
R
n
\mathbb R^n
R
n
into
R
n
\mathbb R^n
R
n
satisfying
F
∘
G
−
G
∘
F
=
α
F
F\circ G - G\circ F=\alpha F
F
∘
G
−
G
∘
F
=
α
F
.a) Show that for all
k
∈
N
k\in\mathbb N
k
∈
N
one has
F
k
∘
G
−
G
∘
F
k
=
α
k
F
k
F^k\circ G-G\circ F^k=\alpha kF^k
F
k
∘
G
−
G
∘
F
k
=
α
k
F
k
.b) Show that there exists
k
≥
1
k\geq 1
k
≥
1
such that
F
k
=
0
F^k=0
F
k
=
0
.
Back to Problems
View on AoPS