MathDB
Hard functional equation

Source: IZHO2015.P3

January 13, 2015
functionalgebrapolynomialalgebra unsolved

Problem Statement

Find all functions f ⁣:RR f\colon \mathbb{R} \to \mathbb{R} such that f(x3+y3+xy)=x2f(x)+y2f(y)+f(xy) f(x^3+y^3+xy)=x^2f(x)+y^2f(y)+f(xy) , for all x,yR x,y \in \mathbb{R} .