MathDB
Putnam 1958 November A7

Source: Putnam 1958 November

July 19, 2022
Putnamnumber theoryrelatively prime

Problem Statement

Let aa and bb be relatively prime positive integers, bb even. For each positive integer qq, let p=p(q)p=p(q) be chosen so that pqab \left| \frac{p}{q} - \frac{a}{b} \right| is a minimum. Prove that limnq=1nqpqabn=14. \lim_{n \to \infty} \sum_{q=1 }^{n} \frac{ q\left| \frac{p}{q} - \frac{a}{b} \right|}{n} = \frac{1}{4}.