MathDB
Sweet n-configurations

Source: CAPS 2024 p2

July 4, 2024
combinatoricsinternational competitionsset familycounting

Problem Statement

For a positive integer nn, an nn-configuration is a family of sets Ai,j1i,jn.\left\langle A_{i,j}\right\rangle_{1\le i,j\le n}. An nn-configuration is called sweet if for every pair of indices (i,j)(i, j) with 1in11\le i\le n -1 and 1jn1\le j\le n we have Ai,jAi+1,jA_{i,j}\subseteq A_{i+1,j} and Aj,iAj,i+1.A_{j,i}\subseteq A_{j,i+1}. Let f(n,k)f(n, k) denote the number of sweet nn-configurations such that An,n{1,2,,k}A_{n,n}\subseteq \{1, 2,\ldots , k\}. Determine which number is larger: f(2024,20242)f\left(2024, 2024^2\right) or f(20242,2024).f\left(2024^2, 2024\right).